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Molecular dynamics calculations have mainly used hard-core interactions because of 
computational simplicity and increased speed. Algorithms for realistic intermolecular 
potentials have been used in studies of solids and liquids. By combining both techniques, 
an algorithm which can reasonably study dilute gases with realistic potentials has been 
achieved. The Boltzmann H-function is calculated for a hard-core and Lennard-Jones 
gas, and the latter is found to decrease more rapidly to equilibrium. 
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The Boltzmann entropy or H-theorem is given by the relationship H = - - S / k  = 
fJ'l In f l  d~ d~, where f l  is the one-particle velocity distribution function. It can be 
shown, theoretically, for a dilute gas, that dH/dt  <~ O, or simply that entropy is a 
monotonically increasing function of time. (1) Alder and Wainwright (2) in their 
pioneering molecular dynamics calculation used the H-function to show that a 
system of 100 hard disks approaches equilibrium. Recently, Orban and BeUemans (8) 
investigated the effects of the particle correlations on the Gibb's entropy in a hard-disk 
gas. All these earlier investigations using molecular dynamics techniques have been 
confined to hard-core interactions. Kohler and Bellemans (~) have calculated the 
approach to equilibrium of weakly coupled dipoles on a rigid lattice. To our knowl- 
edge, no calculation has been made with a Lennard-Jones (6-12) or similar potential 
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for a dilute gas. Use of potentials such as the Lennard-Jones would represent a 
system with more natural physical conditions. In molecular dynamics calculations, 
the algorithms of these systems require much more computation time than does 
the hard-core algorithm. Rahman I~ has studied Lennard-Jones liquids and de Wette 
et  al.(6) have studied crystallization and the surface dynamics of solids with a Lennard- 
Jones potential, 

Because the particles in a liquid or solid are close together, they are either 
interacting with the strong repulsive part of the potential or confined to the region 
of the minimum in the potential, where the attraction is the greatest and has a more 
immediate effect. In dilute and moderately dense gases, the individual particles 
travel in regions where the attractive tail of neighboring particles is very weak, and 
only small perturbations, which are negligible, are made on the trajectory before 
the next collision. The deflection of  the trajectory in the next interaction dominates 
and allows us to introduce a cutoff in the range of the potential. Obviously, this 
could not be done in gravitational problems (such as the motion of star clusters and 
galaxies), where the long-range effect is the most important. (7~ By using this cutoff 
on the range in a program which combines the hard-core and realistic potential 
algorithm, sufficient speed and efficiency are achieved to study the /-/-function for 
dilute and moderately dense gases. The details of the H-function calculation are 
given by Alder and WainwrightJ ~ 

In Fig. 1, curve A, by first restricting the calculation to only the repulsive portion 
of the Lennard-Jones potential (cutoff in range is l a, where a is the Lennard-Jones 
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repulsive core range), a comparison can be made between this technique and the 
Alder-Wainwright results. In curve B, the attractive portion can be added by increasing 
the range to 3or. Initially, in both cases, the system contains 100 particles in a 
randomized lattice configuration. This places the particles in a lattice configuration 
and disrupts the order by giving each particle a small displacement which is random 
in direction and size. The speed of each particle is 2.3 • 10 ~ cm/sec and the velocities 
are in random directions. The unit of  time is 2.16 • 10 -~2 sec and curve A runs for 
375 collisions while curve B has a total of  450 collisions. The Lennard-Jones 
parameters (~, E) are those for argon gas, and the density is 9.0 • 1012 atoms/cm ~. 
The second virial correction to the equation of state is two orders of magnitude 
smaller than unity. It  was found that equilibrium for the Lennard-Jones repulsive 
core was achieved in 2-3 collisions per particle, in agreement with the Alder-  
Wainwright results. When the attractive tail was added, the H-function decreased 
more rapidly, the particle making 4-5 collisions per particle in the same amount  
of  time. The cutoff was changed from 3or to 4.5e and no significant change was seen 
in the results shown in Fig. 1. 

The hard core is the dominant mechanism for bringing the system to equilibrium. 
The effect of  the attractive tail in the collision process is to increase the cross section (8) 
for the particles in the system and induce more repulsive core encounters. The effective 
mean free path is decreased and equilibrium is achieved more rapidly. Figure 2 
shows trajectories of  a beam of 10 noninteracting Lennard-Jones particles, each 
with a different impact parameter (0.2e to 2.0~), which have scattered off a target 
particle. Both the hard-core effects and the way that trajectories can be altered by 
large-angle scattering (which is not present in the hard-core system alone) are evident. 
Classical orbiting has also been observed for the appropriate choice of  energy and 

Fig. 2. Molecular dynamics scattering for a beam of 10 noninteracting particles with a Lennard- 
Jones potential. Impact parameters range from 0.2~ to 2.0e in increments of 0.2a. 
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impac t  parameter .  (9~ By means  o f  these techniques,  we in tend to investigate quan-  
t i tat ively the effects o f  ini t ial  correla t ions  on the app roach  to equi l ibr ium, a~ 
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